NEW

FDA Updates Information on Respirator Decontamination Systems

The U.S. Food and Drug Administration (FDA) is reissuing the Emergency Use Authorizations for decontamination systems that are authorized to decontaminate compatible N95 respirators for use by healthcare personnel (HCP) to prevent exposure to pathogenic biological...

First Patient Treated in Clinical Trial of BCL System

CairnSurgical, Inc., an innovator striving to make breast cancer surgery more precise, announced that the first patient has been treated in its U.S. pivotal trial of the Breast Cancer Locator (BCL) System at Massachusetts General Hospital.

Rush Oak Park Hospital Adopts Surgical Workflow Technology, ExplORer Surgical, Increasing Team Confidence and Reducing OR Challenges

ExplORer Surgical, the only comprehensive intraoperative case support and workflow platform, has reinvented the way surgical support teams prepare and complete effective surgeries with two-way video for case support and remote proctoring to create a digitized playbook.

AORN Releases 2021 Guidelines for Perioperative Practice

The Association of periOperative Registered Nurses (AORN) has published the 2021 Guidelines for Perioperative Practice with six revised guidelines.

Ultrapotent compound may help treat C. diff, reduce recurrence

Herman O. Sintim, the Drug Discovery Professor of Chemistry in Purdue’s Department of Chemistry, has helped advance novel compounds to help treat patients with C. diff.

Clostridioides difficile, or C. diff, is the leading cause of health care-associated infection in the U.S.

Only two antibiotics, vancomycin and fidaxomicin, are FDA-approved for the treatment of C. diff, but even these therapies suffer from high treatment failure and recurrence.

Now, Purdue University innovators have advanced novel compounds that they developed to help treat patients with C. diff, one of only four bacteria considered an urgent threat by the Centers for Disease Control and Prevention. Their work is published in the Journal of Medicinal Chemistry.

“Our compounds have several advantages, including ultrapotent activities with minimum inhibitory concentration values as low as 0.003 μg/mL,” said Herman O. Sintim, the Drug Discovery Professor of Chemistry in Purdue’s Department of Chemistry. “Our compounds also do not kill good bacteria at concentrations that kill C. diff and performed significantly better than current antibiotics in preventing recurrence. These are significant advantages for patients dealing with this difficult bacterial infection.”

The most promising of the Purdue compounds, containing trifluoromethylthio functional group, is HSGN-218. Sintim said it has been shown to be one of the most potent compounds ever produced for use against C. diff.

“This is part of our work to create new solutions to treat diseases and infections that are resistant to current treatment options,” said Sintim, who is a member of the Purdue University Center for Cancer Research and the Purdue Institute for Drug Discovery. “This work provides a potential clinical lead for the development of C. diff therapeutics and also highlights dramatic drug potency enhancement via halogen substitution.”

The researchers patented their compounds through the Purdue Research Foundation Office of Technology Commercialization, which is looking for partners to advance the technology. For more information, contact Joseph Kasper at OTC at jrkasper@prf.org and mention track code 2019-SINT-68535.

George Naclerio, a researcher on Sintim’s team, has been awarded a National Institutes of Health T32 training grant to help facilitate the development of this technology.

Previous

Next

Submit a Comment

Your email address will not be published. Required fields are marked *

X