NEW

Johnson & Johnson to Acquire Shockwave Medical

Johnson & Johnson and Shockwave Medical, Inc. today announced that they have entered into a definitive agreement under which Johnson & Johnson will acquire all outstanding shares of Shockwave for $335 per share in cash, corresponding to an enterprise value of...

Medline Expands Catheter Portfolio

Medline and Consure Medical have announced a new agreement for Medline to exclusively distribute the QiVi MEC male external urine management device to help guard against catheter-associated urinary tract infections (CAUTI) and incontinence-associated dermatitis (IAD)....

FDA Clears Single-use Flexible Ureteroscope

Olympus, a global medical technology company committed to making people's lives healthier, safer and more fulfilling, announced U.S. FDA 510(k) clearance of its first single-use ureteroscope system, RenaFlex™, with full market availability to be announced at a later...

Brainlab, Fujifilm Offer Advanced Neurosurgery Capabilities

FUJIFILM Healthcare Americas Corporation and Brainlab recently announced that Brainlab will be the exclusive U.S. distributor of ARIETTA Precision Ultrasound for neurosurgery applications to be utilized with Brainlab’s surgical navigation systems. ARIETTA Precision,...

Long-Sought Breakthrough in Sepsis Research Offers New Treatments to Prevent Death

Sepsis is a life-threatening illness caused by the human body’s immune response to infection, however if the body overreacts it can lead to death. Nearly 270,000 deaths occur in the United States annually related to sepsis.

The Feinstein Institutes for Medical Research scientists have discovered the development of novel antibody strategy to effectively prevent the association between a harmless protein and a disease mediator that could lead to sepsis death. The research, led by Haichao Wang, PhD, professor in the Institute of Molecular Medicine at Feinstein, published today in the journal Science Translational Medicine.

In 1999, Feinstein Institutes’ researchers discovered an important mediator of lethal sepsis termed as the “high mobility group box 1” (HMGB1) protein. Investigators then began to study another protein called “tetranectin” (TN) that turns HMGB1 into a killer of the body’s immune cells. This transformation induces cell death (pyroptosis) and immunosuppression, impairing the body’s ability to eradicate microbial infections and leads to death.

Now, Feinstein Institutes’ researchers uncovered and confirmed the TN protein’s role in capturing HMGB1 and exacerbating immune cell death. With that discovery, they developed a panel of TN-specific monoclonal antibodies that prevent this harmful TN/HMGB1 interaction, reversing sepsis-induced immunosuppression and fatality.

“We were able to identify and observe this unique interaction between two proteins that ultimately lead to the body’s innate immune cell depletion and lethal consequences,” said Dr. Wang. “By developing protective antibodies, we hope to commercialize and further assess their therapeutic potential in fighting sepsis.”

The research is particularly timely, as the development of these novel antibodies could be used to prevent sepsis induced by COVID-19, commonly known as the coronavirus, and other lethal pathogens.

“Sepsis is the leading cause of death in hospitals and Dr. Wang’s research is a huge step in stopping this escalating and urgent crisis,” said Kevin J. Tracey, MD, president and CEO of the Feinstein Institutes. “His work is a new path for developing possible cures for this complex condition.”

The research was done in collaboration with Drs. Kevin J. Tracey, Ping Wang, Lance Becker, Jonathan Gong and Jianhua Li. It was supported by the National Institute of General Medical Sciences (NIGMS, R01GM063075) and the National Center of Complementary and Integrative Health (NCCIH, R01AT005076).

Previous

Next

Submit a Comment

Your email address will not be published. Required fields are marked *

X